Metamath Proof Explorer


Theorem trpredss

Description: The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011)

Ref Expression
Assertion trpredss
|- ( Pred ( R , A , X ) e. B -> TrPred ( R , A , X ) C_ A )

Proof

Step Hyp Ref Expression
1 dftrpred2
 |-  TrPred ( R , A , X ) = U_ i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i )
2 trpredlem1
 |-  ( Pred ( R , A , X ) e. B -> ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i ) C_ A )
3 2 ralrimivw
 |-  ( Pred ( R , A , X ) e. B -> A. i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i ) C_ A )
4 iunss
 |-  ( U_ i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i ) C_ A <-> A. i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i ) C_ A )
5 3 4 sylibr
 |-  ( Pred ( R , A , X ) e. B -> U_ i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) ` i ) C_ A )
6 1 5 eqsstrid
 |-  ( Pred ( R , A , X ) e. B -> TrPred ( R , A , X ) C_ A )