Step |
Hyp |
Ref |
Expression |
1 |
|
eltrpred |
⊢ ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |
2 |
|
simplr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → 𝑖 ∈ ω ) |
3 |
|
peano2 |
⊢ ( 𝑖 ∈ ω → suc 𝑖 ∈ ω ) |
4 |
2 3
|
syl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → suc 𝑖 ∈ ω ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |
6 |
|
ssid |
⊢ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑌 ) |
7 |
|
predeq3 |
⊢ ( 𝑡 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑡 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑡 = 𝑌 → ( Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑡 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑌 ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑌 ) ) → ∃ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
10 |
|
ssiun |
⊢ ( ∃ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑡 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑌 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
12 |
5 6 11
|
sylancl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
13 |
|
fvex |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ∈ V |
14 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
15 |
|
trpredlem1 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
17 |
16
|
sseld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → 𝑡 ∈ 𝐴 ) ) |
18 |
|
setlikespec |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) |
19 |
18
|
expcom |
⊢ ( 𝑅 Se 𝐴 → ( 𝑡 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑡 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) ) |
21 |
17 20
|
syld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) ) |
22 |
21
|
ralrimiv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ∀ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) |
24 |
|
iunexg |
⊢ ( ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ∈ V ∧ ∀ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) |
25 |
13 23 24
|
sylancr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑋 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑖 |
28 |
|
nfcv |
⊢ Ⅎ 𝑓 ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) |
29 |
|
predeq3 |
⊢ ( 𝑦 = 𝑡 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
30 |
29
|
cbviunv |
⊢ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑡 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑡 ) |
31 |
|
iuneq1 |
⊢ ( 𝑎 = 𝑓 → ∪ 𝑡 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑡 ) = ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
32 |
30 31
|
eqtrid |
⊢ ( 𝑎 = 𝑓 → ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
33 |
32
|
cbvmptv |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
34 |
|
rdgeq1 |
⊢ ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) → rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
35 |
|
reseq1 |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ) |
36 |
33 34 35
|
mp2b |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
37 |
|
iuneq1 |
⊢ ( 𝑓 = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → ∪ 𝑡 ∈ 𝑓 Pred ( 𝑅 , 𝐴 , 𝑡 ) = ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
38 |
26 27 28 36 37
|
frsucmpt |
⊢ ( ( 𝑖 ∈ ω ∧ ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) = ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
39 |
2 25 38
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) = ∪ 𝑡 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
40 |
12 39
|
sseqtrrd |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑖 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) |
42 |
41
|
sseq2d |
⊢ ( 𝑗 = suc 𝑖 → ( Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( suc 𝑖 ∈ ω ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) → ∃ 𝑗 ∈ ω Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ) |
44 |
|
ssiun |
⊢ ( ∃ 𝑗 ∈ ω Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ∪ 𝑗 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ) |
45 |
43 44
|
syl |
⊢ ( ( suc 𝑖 ∈ ω ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ∪ 𝑗 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ) |
46 |
|
dftrpred2 |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ 𝑗 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) |
47 |
45 46
|
sseqtrrdi |
⊢ ( ( suc 𝑖 ∈ ω ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑖 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
48 |
4 40 47
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑖 ∈ ω ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
49 |
48
|
rexlimdva2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
50 |
1 49
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |