Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred2 |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) |
2 |
|
fveq2 |
⊢ ( 𝑗 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ) |
3 |
2
|
sseq1d |
⊢ ( 𝑗 = ∅ → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ⊆ 𝐵 ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑗 = ∅ → ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ⊆ 𝐵 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ) |
6 |
5
|
sseq1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑗 = suc 𝑘 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝑗 = suc 𝑘 → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ⊆ 𝐵 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑗 = suc 𝑘 → ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ⊆ 𝐵 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) ) ) |
14 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
15 |
|
fr0g |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
18 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) |
19 |
17 18
|
eqsstrd |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ⊆ 𝐵 ) |
20 |
|
fvex |
⊢ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ∈ V |
21 |
|
trpredlem1 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐴 ) |
22 |
14 21
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐴 ) |
23 |
22
|
sseld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → 𝑦 ∈ 𝐴 ) ) |
24 |
|
setlikespec |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
25 |
24
|
expcom |
⊢ ( 𝑅 Se 𝐴 → ( 𝑦 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) ) |
27 |
23 26
|
syld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) ) |
28 |
27
|
ralrimiv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
30 |
|
iunexg |
⊢ ( ( ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ∈ V ∧ ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) → ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
31 |
20 29 30
|
sylancr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) → ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑋 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑘 |
34 |
|
nfcv |
⊢ Ⅎ 𝑎 ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) |
35 |
|
eqid |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
36 |
|
predeq3 |
⊢ ( 𝑦 = 𝑑 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑑 ) ) |
37 |
36
|
cbviunv |
⊢ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑑 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑑 ) |
38 |
|
iuneq1 |
⊢ ( 𝑎 = 𝑐 → ∪ 𝑑 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑑 ) = ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) |
39 |
37 38
|
eqtrid |
⊢ ( 𝑎 = 𝑐 → ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) |
40 |
39
|
cbvmptv |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) |
41 |
|
rdgeq1 |
⊢ ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) → rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
42 |
|
reseq1 |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ) |
43 |
40 41 42
|
mp2b |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
44 |
43
|
fveq1i |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) = ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) |
45 |
44
|
eqeq2i |
⊢ ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ↔ 𝑎 = ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ) |
46 |
|
iuneq1 |
⊢ ( 𝑎 = ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
47 |
45 46
|
sylbi |
⊢ ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
48 |
32 33 34 35 47
|
frsucmpt |
⊢ ( ( 𝑘 ∈ ω ∧ ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) = ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
49 |
31 48
|
sylan2 |
⊢ ( ( 𝑘 ∈ ω ∧ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) = ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
50 |
44
|
sseq1i |
⊢ ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ↔ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) |
51 |
50
|
anbi2i |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ↔ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) |
52 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) |
53 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 |
54 |
|
nfv |
⊢ Ⅎ 𝑦 Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 |
55 |
53 54
|
nfan |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) |
56 |
52 55
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) |
57 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 |
58 |
56 57
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) |
59 |
|
ssel |
⊢ ( ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 → ( 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → 𝑦 ∈ 𝐵 ) ) |
60 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) ) |
61 |
60
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) ) |
62 |
59 61
|
sylan9r |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) → ( 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) ) |
63 |
58 62
|
ralrimi |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
64 |
63
|
adantl |
⊢ ( ( 𝑘 ∈ ω ∧ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) → ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
65 |
51 64
|
sylan2b |
⊢ ( ( 𝑘 ∈ ω ∧ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) → ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
66 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ↔ ∀ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
67 |
65 66
|
sylibr |
⊢ ( ( 𝑘 ∈ ω ∧ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) → ∪ 𝑦 ∈ ( ( rec ( ( 𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred ( 𝑅 , 𝐴 , 𝑑 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ) |
68 |
49 67
|
eqsstrd |
⊢ ( ( 𝑘 ∈ ω ∧ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) ∧ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ⊆ 𝐵 ) |
69 |
68
|
exp32 |
⊢ ( 𝑘 ∈ ω → ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ⊆ 𝐵 ) ) ) |
70 |
69
|
a2d |
⊢ ( 𝑘 ∈ ω → ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑘 ) ⊆ 𝐵 ) → ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑘 ) ⊆ 𝐵 ) ) ) |
71 |
4 7 10 13 19 70
|
finds |
⊢ ( 𝑖 ∈ ω → ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) ) |
72 |
71
|
com12 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ( 𝑖 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) ) |
73 |
72
|
ralrimiv |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) |
74 |
|
iunss |
⊢ ( ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ↔ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) |
75 |
73 74
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐵 ) |
76 |
1 75
|
eqsstrid |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ 𝐵 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) |