Metamath Proof Explorer


Theorem trpred0

Description: The class of transitive predecessors is empty when A is empty. (Contributed by Scott Fenton, 30-Apr-2012)

Ref Expression
Assertion trpred0 TrPred ( 𝑅 , ∅ , 𝑋 ) = ∅

Proof

Step Hyp Ref Expression
1 dftrpred2 TrPred ( 𝑅 , ∅ , 𝑋 ) = 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 )
2 pred0 Pred ( 𝑅 , ∅ , 𝑦 ) = ∅
3 2 a1i ( 𝑦𝑎 → Pred ( 𝑅 , ∅ , 𝑦 ) = ∅ )
4 3 iuneq2i 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) = 𝑦𝑎
5 iun0 𝑦𝑎 ∅ = ∅
6 4 5 eqtri 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) = ∅
7 6 mpteq2i ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∅ )
8 pred0 Pred ( 𝑅 , ∅ , 𝑋 ) = ∅
9 rdgeq12 ( ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∅ ) ∧ Pred ( 𝑅 , ∅ , 𝑋 ) = ∅ ) → rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) )
10 7 8 9 mp2an rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ )
11 10 reseq1i ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω )
12 11 fveq1i ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 )
13 nn0suc ( 𝑖 ∈ ω → ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) )
14 fveq2 ( 𝑖 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) )
15 0ex ∅ ∈ V
16 fr0g ( ∅ ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ )
17 15 16 ax-mp ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) = ∅
18 14 17 eqtrdi ( 𝑖 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ )
19 nfcv 𝑎
20 nfcv 𝑎 𝑗
21 eqid ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω )
22 eqidd ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑗 ) → ∅ = ∅ )
23 19 20 19 21 22 frsucmpt ( ( 𝑗 ∈ ω ∧ ∅ ∈ V ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ )
24 15 23 mpan2 ( 𝑗 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ )
25 fveqeq2 ( 𝑖 = suc 𝑗 → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ ) )
26 24 25 syl5ibrcom ( 𝑗 ∈ ω → ( 𝑖 = suc 𝑗 → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) )
27 26 rexlimiv ( ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ )
28 18 27 jaoi ( ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ )
29 13 28 syl ( 𝑖 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ )
30 12 29 eqtrid ( 𝑖 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ∅ )
31 30 iuneq2i 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = 𝑖 ∈ ω ∅
32 iun0 𝑖 ∈ ω ∅ = ∅
33 1 31 32 3eqtri TrPred ( 𝑅 , ∅ , 𝑋 ) = ∅