Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred2 |
⊢ TrPred ( 𝑅 , ∅ , 𝑋 ) = ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) |
2 |
|
pred0 |
⊢ Pred ( 𝑅 , ∅ , 𝑦 ) = ∅ |
3 |
2
|
a1i |
⊢ ( 𝑦 ∈ 𝑎 → Pred ( 𝑅 , ∅ , 𝑦 ) = ∅ ) |
4 |
3
|
iuneq2i |
⊢ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) = ∪ 𝑦 ∈ 𝑎 ∅ |
5 |
|
iun0 |
⊢ ∪ 𝑦 ∈ 𝑎 ∅ = ∅ |
6 |
4 5
|
eqtri |
⊢ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) = ∅ |
7 |
6
|
mpteq2i |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∅ ) |
8 |
|
pred0 |
⊢ Pred ( 𝑅 , ∅ , 𝑋 ) = ∅ |
9 |
|
rdgeq12 |
⊢ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∅ ) ∧ Pred ( 𝑅 , ∅ , 𝑋 ) = ∅ ) → rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ) |
10 |
7 8 9
|
mp2an |
⊢ rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) |
11 |
10
|
reseq1i |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) |
12 |
11
|
fveq1i |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) |
13 |
|
nn0suc |
⊢ ( 𝑖 ∈ ω → ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑖 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) ) |
15 |
|
0ex |
⊢ ∅ ∈ V |
16 |
|
fr0g |
⊢ ( ∅ ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ ) |
17 |
15 16
|
ax-mp |
⊢ ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ |
18 |
14 17
|
eqtrdi |
⊢ ( 𝑖 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑎 ∅ |
20 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑗 |
21 |
|
eqid |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) |
22 |
|
eqidd |
⊢ ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑗 ) → ∅ = ∅ ) |
23 |
19 20 19 21 22
|
frsucmpt |
⊢ ( ( 𝑗 ∈ ω ∧ ∅ ∈ V ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ ) |
24 |
15 23
|
mpan2 |
⊢ ( 𝑗 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ ) |
25 |
|
fveqeq2 |
⊢ ( 𝑖 = suc 𝑗 → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ↔ ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ suc 𝑗 ) = ∅ ) ) |
26 |
24 25
|
syl5ibrcom |
⊢ ( 𝑗 ∈ ω → ( 𝑖 = suc 𝑗 → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) ) |
27 |
26
|
rexlimiv |
⊢ ( ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) |
28 |
18 27
|
jaoi |
⊢ ( ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) |
29 |
13 28
|
syl |
⊢ ( 𝑖 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∅ ) , ∅ ) ↾ ω ) ‘ 𝑖 ) = ∅ ) |
30 |
12 29
|
eqtrid |
⊢ ( 𝑖 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ∅ ) |
31 |
30
|
iuneq2i |
⊢ ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , ∅ , 𝑦 ) ) , Pred ( 𝑅 , ∅ , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ω ∅ |
32 |
|
iun0 |
⊢ ∪ 𝑖 ∈ ω ∅ = ∅ |
33 |
1 31 32
|
3eqtri |
⊢ TrPred ( 𝑅 , ∅ , 𝑋 ) = ∅ |