Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred2 |
|- TrPred ( R , (/) , X ) = U_ i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) |` _om ) ` i ) |
2 |
|
pred0 |
|- Pred ( R , (/) , y ) = (/) |
3 |
2
|
a1i |
|- ( y e. a -> Pred ( R , (/) , y ) = (/) ) |
4 |
3
|
iuneq2i |
|- U_ y e. a Pred ( R , (/) , y ) = U_ y e. a (/) |
5 |
|
iun0 |
|- U_ y e. a (/) = (/) |
6 |
4 5
|
eqtri |
|- U_ y e. a Pred ( R , (/) , y ) = (/) |
7 |
6
|
mpteq2i |
|- ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) = ( a e. _V |-> (/) ) |
8 |
|
pred0 |
|- Pred ( R , (/) , X ) = (/) |
9 |
|
rdgeq12 |
|- ( ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) = ( a e. _V |-> (/) ) /\ Pred ( R , (/) , X ) = (/) ) -> rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) = rec ( ( a e. _V |-> (/) ) , (/) ) ) |
10 |
7 8 9
|
mp2an |
|- rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) = rec ( ( a e. _V |-> (/) ) , (/) ) |
11 |
10
|
reseq1i |
|- ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) |` _om ) = ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) |
12 |
11
|
fveq1i |
|- ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) |` _om ) ` i ) = ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) |
13 |
|
nn0suc |
|- ( i e. _om -> ( i = (/) \/ E. j e. _om i = suc j ) ) |
14 |
|
fveq2 |
|- ( i = (/) -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` (/) ) ) |
15 |
|
0ex |
|- (/) e. _V |
16 |
|
fr0g |
|- ( (/) e. _V -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` (/) ) = (/) ) |
17 |
15 16
|
ax-mp |
|- ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` (/) ) = (/) |
18 |
14 17
|
eqtrdi |
|- ( i = (/) -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) ) |
19 |
|
nfcv |
|- F/_ a (/) |
20 |
|
nfcv |
|- F/_ a j |
21 |
|
eqid |
|- ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) = ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) |
22 |
|
eqidd |
|- ( a = ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` j ) -> (/) = (/) ) |
23 |
19 20 19 21 22
|
frsucmpt |
|- ( ( j e. _om /\ (/) e. _V ) -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` suc j ) = (/) ) |
24 |
15 23
|
mpan2 |
|- ( j e. _om -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` suc j ) = (/) ) |
25 |
|
fveqeq2 |
|- ( i = suc j -> ( ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) <-> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` suc j ) = (/) ) ) |
26 |
24 25
|
syl5ibrcom |
|- ( j e. _om -> ( i = suc j -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) ) ) |
27 |
26
|
rexlimiv |
|- ( E. j e. _om i = suc j -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) ) |
28 |
18 27
|
jaoi |
|- ( ( i = (/) \/ E. j e. _om i = suc j ) -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) ) |
29 |
13 28
|
syl |
|- ( i e. _om -> ( ( rec ( ( a e. _V |-> (/) ) , (/) ) |` _om ) ` i ) = (/) ) |
30 |
12 29
|
eqtrid |
|- ( i e. _om -> ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) |` _om ) ` i ) = (/) ) |
31 |
30
|
iuneq2i |
|- U_ i e. _om ( ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , (/) , y ) ) , Pred ( R , (/) , X ) ) |` _om ) ` i ) = U_ i e. _om (/) |
32 |
|
iun0 |
|- U_ i e. _om (/) = (/) |
33 |
1 31 32
|
3eqtri |
|- TrPred ( R , (/) , X ) = (/) |