Metamath Proof Explorer


Theorem trpredelss

Description: Given a transitive predecessor Y of X , the transitive predecessors of Y form a subclass of the transitive predecessors of X . (Contributed by Scott Fenton, 25-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredelss
|- ( ( X e. A /\ R Se A ) -> ( Y e. TrPred ( R , A , X ) -> TrPred ( R , A , Y ) C_ TrPred ( R , A , X ) ) )

Proof

Step Hyp Ref Expression
1 setlikespec
 |-  ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V )
2 trpredss
 |-  ( Pred ( R , A , X ) e. _V -> TrPred ( R , A , X ) C_ A )
3 1 2 syl
 |-  ( ( X e. A /\ R Se A ) -> TrPred ( R , A , X ) C_ A )
4 3 sselda
 |-  ( ( ( X e. A /\ R Se A ) /\ Y e. TrPred ( R , A , X ) ) -> Y e. A )
5 simplr
 |-  ( ( ( X e. A /\ R Se A ) /\ Y e. TrPred ( R , A , X ) ) -> R Se A )
6 trpredtr
 |-  ( ( X e. A /\ R Se A ) -> ( y e. TrPred ( R , A , X ) -> Pred ( R , A , y ) C_ TrPred ( R , A , X ) ) )
7 6 ralrimiv
 |-  ( ( X e. A /\ R Se A ) -> A. y e. TrPred ( R , A , X ) Pred ( R , A , y ) C_ TrPred ( R , A , X ) )
8 7 adantr
 |-  ( ( ( X e. A /\ R Se A ) /\ Y e. TrPred ( R , A , X ) ) -> A. y e. TrPred ( R , A , X ) Pred ( R , A , y ) C_ TrPred ( R , A , X ) )
9 trpredtr
 |-  ( ( X e. A /\ R Se A ) -> ( Y e. TrPred ( R , A , X ) -> Pred ( R , A , Y ) C_ TrPred ( R , A , X ) ) )
10 9 imp
 |-  ( ( ( X e. A /\ R Se A ) /\ Y e. TrPred ( R , A , X ) ) -> Pred ( R , A , Y ) C_ TrPred ( R , A , X ) )
11 trpredmintr
 |-  ( ( ( Y e. A /\ R Se A ) /\ ( A. y e. TrPred ( R , A , X ) Pred ( R , A , y ) C_ TrPred ( R , A , X ) /\ Pred ( R , A , Y ) C_ TrPred ( R , A , X ) ) ) -> TrPred ( R , A , Y ) C_ TrPred ( R , A , X ) )
12 4 5 8 10 11 syl22anc
 |-  ( ( ( X e. A /\ R Se A ) /\ Y e. TrPred ( R , A , X ) ) -> TrPred ( R , A , Y ) C_ TrPred ( R , A , X ) )
13 12 ex
 |-  ( ( X e. A /\ R Se A ) -> ( Y e. TrPred ( R , A , X ) -> TrPred ( R , A , Y ) C_ TrPred ( R , A , X ) ) )