Step |
Hyp |
Ref |
Expression |
1 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
2 |
|
trpredss |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 ) |
4 |
3
|
sselda |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 ∈ 𝐴 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑅 Se 𝐴 ) |
6 |
|
trpredtr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
7 |
6
|
ralrimiv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
9 |
|
trpredtr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
11 |
|
trpredmintr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
12 |
4 5 8 10 11
|
syl22anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
13 |
12
|
ex |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |