Metamath Proof Explorer


Theorem trpredelss

Description: Given a transitive predecessor Y of X , the transitive predecessors of Y form a subclass of the transitive predecessors of X . (Contributed by Scott Fenton, 25-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredelss ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 setlikespec ( ( 𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )
2 trpredss ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 )
3 1 2 syl ( ( 𝑋𝐴𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 )
4 3 sselda ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌𝐴 )
5 simplr ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑅 Se 𝐴 )
6 trpredtr ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) )
7 6 ralrimiv ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
8 7 adantr ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
9 trpredtr ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) )
10 9 imp ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
11 trpredmintr ( ( ( 𝑌𝐴𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
12 4 5 8 10 11 syl22anc ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
13 12 ex ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → TrPred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) )