Step |
Hyp |
Ref |
Expression |
1 |
|
elun |
⊢ ( 𝑧 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ↔ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ 𝑧 ∈ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
2 |
|
predel |
⊢ ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑧 ∈ 𝐴 ) |
3 |
|
setlikespec |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
4 |
|
trpredpred |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) |
6 |
5
|
expcom |
⊢ ( 𝑅 Se 𝐴 → ( 𝑧 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
8 |
2 7
|
syl5 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
9 |
8
|
ancld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
10 |
|
trpredeq3 |
⊢ ( 𝑦 = 𝑧 → TrPred ( 𝑅 , 𝐴 , 𝑦 ) = TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) |
11 |
10
|
sseq2d |
⊢ ( 𝑦 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) → ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
13 |
|
ssiun |
⊢ ( ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
15 |
9 14
|
syl6 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
16 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ↔ ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
17 |
|
predel |
⊢ ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑦 ∈ 𝐴 ) |
18 |
|
setlikespec |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
19 |
18
|
ancoms |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑦 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V ) |
21 |
|
trpredss |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ∈ V → TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐴 ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐴 ) |
23 |
22
|
sseld |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → 𝑧 ∈ 𝐴 ) ) |
24 |
3
|
expcom |
⊢ ( 𝑅 Se 𝐴 → ( 𝑧 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) ) |
26 |
23 25
|
syld |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) ) |
27 |
26
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
28 |
27 4
|
syl |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑧 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
30 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑅 Se 𝐴 ) |
31 |
|
trpredelss |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → TrPred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → TrPred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → TrPred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
34 |
28 33
|
sstrd |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
35 |
34
|
exp31 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
36 |
17 35
|
syl5 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
37 |
36
|
reximdvai |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
38 |
37 13
|
syl6 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∃ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
39 |
16 38
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
40 |
15 39
|
jaod |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ 𝑧 ∈ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
41 |
|
ssun4 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
42 |
40 41
|
syl6 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ 𝑧 ∈ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
43 |
1 42
|
syl5bi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑧 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
44 |
43
|
ralrimiv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
45 |
|
ssun1 |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
46 |
44 45
|
jctir |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ∀ 𝑧 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
47 |
|
trpredmintr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑧 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
48 |
46 47
|
mpdan |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
49 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
50 |
|
trpredpred |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
51 |
49 50
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
52 |
51
|
sseld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
53 |
|
trpredelss |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
54 |
52 53
|
syld |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
55 |
54
|
ralrimiv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
56 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
57 |
55 56
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
58 |
51 57
|
unssd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
59 |
48 58
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |