Metamath Proof Explorer


Theorem trpredeq3

Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion trpredeq3 ( 𝑋 = 𝑌 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 predeq3 ( 𝑋 = 𝑌 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) )
2 rdgeq2 ( Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑌 ) → rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) )
3 1 2 syl ( 𝑋 = 𝑌 → rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) )
4 3 reseq1d ( 𝑋 = 𝑌 → ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) ↾ ω ) )
5 4 rneqd ( 𝑋 = 𝑌 → ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) ↾ ω ) )
6 5 unieqd ( 𝑋 = 𝑌 ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) ↾ ω ) )
7 df-trpred TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
8 df-trpred TrPred ( 𝑅 , 𝐴 , 𝑌 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑌 ) ) ↾ ω )
9 6 7 8 3eqtr4g ( 𝑋 = 𝑌 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) )