Metamath Proof Explorer


Theorem trpredeq3

Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion trpredeq3 X = Y TrPred R A X = TrPred R A Y

Proof

Step Hyp Ref Expression
1 predeq3 X = Y Pred R A X = Pred R A Y
2 rdgeq2 Pred R A X = Pred R A Y rec a V y a Pred R A y Pred R A X = rec a V y a Pred R A y Pred R A Y
3 1 2 syl X = Y rec a V y a Pred R A y Pred R A X = rec a V y a Pred R A y Pred R A Y
4 3 reseq1d X = Y rec a V y a Pred R A y Pred R A X ω = rec a V y a Pred R A y Pred R A Y ω
5 4 rneqd X = Y ran rec a V y a Pred R A y Pred R A X ω = ran rec a V y a Pred R A y Pred R A Y ω
6 5 unieqd X = Y ran rec a V y a Pred R A y Pred R A X ω = ran rec a V y a Pred R A y Pred R A Y ω
7 df-trpred TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω
8 df-trpred TrPred R A Y = ran rec a V y a Pred R A y Pred R A Y ω
9 6 7 8 3eqtr4g X = Y TrPred R A X = TrPred R A Y