Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Transitive closure under a relationship
trpredeq3
Next ⟩
trpredeq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
trpredeq3
Description:
Equality theorem for transitive predecessors.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
trpredeq3
⊢
X
=
Y
→
TrPred
R
A
X
=
TrPred
R
A
Y
Proof
Step
Hyp
Ref
Expression
1
predeq3
⊢
X
=
Y
→
Pred
R
A
X
=
Pred
R
A
Y
2
rdgeq2
⊢
Pred
R
A
X
=
Pred
R
A
Y
→
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
=
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
3
1
2
syl
⊢
X
=
Y
→
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
=
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
4
3
reseq1d
⊢
X
=
Y
→
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
↾
ω
=
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
↾
ω
5
4
rneqd
⊢
X
=
Y
→
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
↾
ω
=
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
↾
ω
6
5
unieqd
⊢
X
=
Y
→
⋃
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
↾
ω
=
⋃
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
↾
ω
7
df-trpred
⊢
TrPred
R
A
X
=
⋃
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
X
↾
ω
8
df-trpred
⊢
TrPred
R
A
Y
=
⋃
ran
⁡
rec
⁡
a
∈
V
⟼
⋃
y
∈
a
Pred
R
A
y
Pred
R
A
Y
↾
ω
9
6
7
8
3eqtr4g
⊢
X
=
Y
→
TrPred
R
A
X
=
TrPred
R
A
Y