Step |
Hyp |
Ref |
Expression |
1 |
|
predeq3 |
|- ( X = Y -> Pred ( R , A , X ) = Pred ( R , A , Y ) ) |
2 |
|
rdgeq2 |
|- ( Pred ( R , A , X ) = Pred ( R , A , Y ) -> rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) = rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) ) |
3 |
1 2
|
syl |
|- ( X = Y -> rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) = rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) ) |
4 |
3
|
reseq1d |
|- ( X = Y -> ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) |` _om ) ) |
5 |
4
|
rneqd |
|- ( X = Y -> ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) |` _om ) ) |
6 |
5
|
unieqd |
|- ( X = Y -> U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) |` _om ) ) |
7 |
|
df-trpred |
|- TrPred ( R , A , X ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) |
8 |
|
df-trpred |
|- TrPred ( R , A , Y ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , Y ) ) |` _om ) |
9 |
6 7 8
|
3eqtr4g |
|- ( X = Y -> TrPred ( R , A , X ) = TrPred ( R , A , Y ) ) |