Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trpredeq1d.1 | |- ( ph -> R = S ) |
|
Assertion | trpredeq1d | |- ( ph -> TrPred ( R , A , X ) = TrPred ( S , A , X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq1d.1 | |- ( ph -> R = S ) |
|
2 | trpredeq1 | |- ( R = S -> TrPred ( R , A , X ) = TrPred ( S , A , X ) ) |
|
3 | 1 2 | syl | |- ( ph -> TrPred ( R , A , X ) = TrPred ( S , A , X ) ) |