Metamath Proof Explorer


Theorem trpredeq1d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq1d.1
|- ( ph -> R = S )
Assertion trpredeq1d
|- ( ph -> TrPred ( R , A , X ) = TrPred ( S , A , X ) )

Proof

Step Hyp Ref Expression
1 trpredeq1d.1
 |-  ( ph -> R = S )
2 trpredeq1
 |-  ( R = S -> TrPred ( R , A , X ) = TrPred ( S , A , X ) )
3 1 2 syl
 |-  ( ph -> TrPred ( R , A , X ) = TrPred ( S , A , X ) )