Metamath Proof Explorer


Theorem trpredeq1d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq1d.1 ( 𝜑𝑅 = 𝑆 )
Assertion trpredeq1d ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑆 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 trpredeq1d.1 ( 𝜑𝑅 = 𝑆 )
2 trpredeq1 ( 𝑅 = 𝑆 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑆 , 𝐴 , 𝑋 ) )
3 1 2 syl ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑆 , 𝐴 , 𝑋 ) )