Metamath Proof Explorer


Theorem trpredeq1

Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion trpredeq1 ( 𝑅 = 𝑆 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑆 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 predeq1 ( 𝑅 = 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐴 , 𝑦 ) )
2 1 iuneq2d ( 𝑅 = 𝑆 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) )
3 2 mpteq2dv ( 𝑅 = 𝑆 → ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) )
4 predeq1 ( 𝑅 = 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐴 , 𝑋 ) )
5 rdgeq12 ( ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑆 , 𝐴 , 𝑋 ) ) → rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) )
6 3 4 5 syl2anc ( 𝑅 = 𝑆 → rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) )
7 6 reseq1d ( 𝑅 = 𝑆 → ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) ↾ ω ) )
8 7 rneqd ( 𝑅 = 𝑆 → ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) ↾ ω ) )
9 8 unieqd ( 𝑅 = 𝑆 ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) ↾ ω ) )
10 df-trpred TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
11 df-trpred TrPred ( 𝑆 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑆 , 𝐴 , 𝑦 ) ) , Pred ( 𝑆 , 𝐴 , 𝑋 ) ) ↾ ω )
12 9 10 11 3eqtr4g ( 𝑅 = 𝑆 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑆 , 𝐴 , 𝑋 ) )