Metamath Proof Explorer


Definition df-trpred

Description: Define the transitive predecessors of a class X under a relation R in a class A . This class can be thought of as the "smallest" class containing all elements of A that are linked to X by an R -chain (see trpredtr and trpredmintr ). Definition based on Theorem 8.4 of Don Monk's notes for Advanced Set Theory, which can be found at https://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion df-trpred TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 cX 𝑋
3 1 0 2 ctrpred TrPred ( 𝑅 , 𝐴 , 𝑋 )
4 va 𝑎
5 cvv V
6 vy 𝑦
7 4 cv 𝑎
8 6 cv 𝑦
9 1 0 8 cpred Pred ( 𝑅 , 𝐴 , 𝑦 )
10 6 7 9 ciun 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 )
11 4 5 10 cmpt ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) )
12 1 0 2 cpred Pred ( 𝑅 , 𝐴 , 𝑋 )
13 11 12 crdg rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) )
14 com ω
15 13 14 cres ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
16 15 crn ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
17 16 cuni ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
18 3 17 wceq TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )