Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
⊢ 𝑅 |
1 |
|
cA |
⊢ 𝐴 |
2 |
|
cX |
⊢ 𝑋 |
3 |
1 0 2
|
ctrpred |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) |
4 |
|
va |
⊢ 𝑎 |
5 |
|
cvv |
⊢ V |
6 |
|
vy |
⊢ 𝑦 |
7 |
4
|
cv |
⊢ 𝑎 |
8 |
6
|
cv |
⊢ 𝑦 |
9 |
1 0 8
|
cpred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) |
10 |
6 7 9
|
ciun |
⊢ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) |
11 |
4 5 10
|
cmpt |
⊢ ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
12 |
1 0 2
|
cpred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) |
13 |
11 12
|
crdg |
⊢ rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
14 |
|
com |
⊢ ω |
15 |
13 14
|
cres |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
16 |
15
|
crn |
⊢ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
17 |
16
|
cuni |
⊢ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
18 |
3 17
|
wceq |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |