Step |
Hyp |
Ref |
Expression |
1 |
|
predeq2 |
⊢ ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
2 |
1
|
iuneq2d |
⊢ ( 𝐴 = 𝐵 → ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) |
3 |
2
|
mpteq2dv |
⊢ ( 𝐴 = 𝐵 → ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ) |
4 |
|
predeq2 |
⊢ ( 𝐴 = 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
5 |
|
rdgeq12 |
⊢ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) → rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ) |
6 |
5
|
reseq1d |
⊢ ( ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) → ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ↾ ω ) ) |
7 |
3 4 6
|
syl2anc |
⊢ ( 𝐴 = 𝐵 → ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ↾ ω ) ) |
8 |
7
|
rneqd |
⊢ ( 𝐴 = 𝐵 → ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ↾ ω ) ) |
9 |
8
|
unieqd |
⊢ ( 𝐴 = 𝐵 → ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ↾ ω ) ) |
10 |
|
df-trpred |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
11 |
|
df-trpred |
⊢ TrPred ( 𝑅 , 𝐵 , 𝑋 ) = ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐵 , 𝑦 ) ) , Pred ( 𝑅 , 𝐵 , 𝑋 ) ) ↾ ω ) |
12 |
9 10 11
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) ) |