Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trpredeq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | trpredeq2d | ⊢ ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | trpredeq2 | ⊢ ( 𝐴 = 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) ) |