Metamath Proof Explorer


Theorem trpredeq2d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq2d.1 ( 𝜑𝐴 = 𝐵 )
Assertion trpredeq2d ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 trpredeq2d.1 ( 𝜑𝐴 = 𝐵 )
2 trpredeq2 ( 𝐴 = 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) )
3 1 2 syl ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐵 , 𝑋 ) )