Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred3g |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
2 |
|
iunun |
⊢ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ( { 𝑦 } ∪ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) { 𝑦 } ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
3 |
|
iunid |
⊢ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) { 𝑦 } = Pred ( 𝑅 , 𝐴 , 𝑋 ) |
4 |
3
|
uneq1i |
⊢ ( ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) { 𝑦 } ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
5 |
2 4
|
eqtri |
⊢ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ( { 𝑦 } ∪ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) |
6 |
1 5
|
eqtr4di |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ( { 𝑦 } ∪ TrPred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |