Metamath Proof Explorer


Theorem dftrpred4g

Description: Another recursive expression for the transitive predecessors. (Contributed by Scott Fenton, 27-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion dftrpred4g
|- ( ( X e. A /\ R Se A ) -> TrPred ( R , A , X ) = U_ y e. Pred ( R , A , X ) ( { y } u. TrPred ( R , A , y ) ) )

Proof

Step Hyp Ref Expression
1 dftrpred3g
 |-  ( ( X e. A /\ R Se A ) -> TrPred ( R , A , X ) = ( Pred ( R , A , X ) u. U_ y e. Pred ( R , A , X ) TrPred ( R , A , y ) ) )
2 iunun
 |-  U_ y e. Pred ( R , A , X ) ( { y } u. TrPred ( R , A , y ) ) = ( U_ y e. Pred ( R , A , X ) { y } u. U_ y e. Pred ( R , A , X ) TrPred ( R , A , y ) )
3 iunid
 |-  U_ y e. Pred ( R , A , X ) { y } = Pred ( R , A , X )
4 3 uneq1i
 |-  ( U_ y e. Pred ( R , A , X ) { y } u. U_ y e. Pred ( R , A , X ) TrPred ( R , A , y ) ) = ( Pred ( R , A , X ) u. U_ y e. Pred ( R , A , X ) TrPred ( R , A , y ) )
5 2 4 eqtri
 |-  U_ y e. Pred ( R , A , X ) ( { y } u. TrPred ( R , A , y ) ) = ( Pred ( R , A , X ) u. U_ y e. Pred ( R , A , X ) TrPred ( R , A , y ) )
6 1 5 eqtr4di
 |-  ( ( X e. A /\ R Se A ) -> TrPred ( R , A , X ) = U_ y e. Pred ( R , A , X ) ( { y } u. TrPred ( R , A , y ) ) )