Metamath Proof Explorer


Theorem trpredpo

Description: If R partially orders A , then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredpo
|- ( ( R Po A /\ X e. A /\ R Se A ) -> TrPred ( R , A , X ) = Pred ( R , A , X ) )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> X e. A )
2 simp3
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> R Se A )
3 predpo
 |-  ( ( R Po A /\ X e. A ) -> ( y e. Pred ( R , A , X ) -> Pred ( R , A , y ) C_ Pred ( R , A , X ) ) )
4 3 ralrimiv
 |-  ( ( R Po A /\ X e. A ) -> A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) )
5 4 3adant3
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) )
6 ssidd
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ Pred ( R , A , X ) )
7 trpredmintr
 |-  ( ( ( X e. A /\ R Se A ) /\ ( A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) /\ Pred ( R , A , X ) C_ Pred ( R , A , X ) ) ) -> TrPred ( R , A , X ) C_ Pred ( R , A , X ) )
8 1 2 5 6 7 syl22anc
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> TrPred ( R , A , X ) C_ Pred ( R , A , X ) )
9 setlikespec
 |-  ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V )
10 trpredpred
 |-  ( Pred ( R , A , X ) e. _V -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) )
11 9 10 syl
 |-  ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) )
12 11 3adant1
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) )
13 8 12 eqssd
 |-  ( ( R Po A /\ X e. A /\ R Se A ) -> TrPred ( R , A , X ) = Pred ( R , A , X ) )