Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> X e. A ) |
2 |
|
simp3 |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> R Se A ) |
3 |
|
predpo |
|- ( ( R Po A /\ X e. A ) -> ( y e. Pred ( R , A , X ) -> Pred ( R , A , y ) C_ Pred ( R , A , X ) ) ) |
4 |
3
|
ralrimiv |
|- ( ( R Po A /\ X e. A ) -> A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) ) |
5 |
4
|
3adant3 |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) ) |
6 |
|
ssidd |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ Pred ( R , A , X ) ) |
7 |
|
trpredmintr |
|- ( ( ( X e. A /\ R Se A ) /\ ( A. y e. Pred ( R , A , X ) Pred ( R , A , y ) C_ Pred ( R , A , X ) /\ Pred ( R , A , X ) C_ Pred ( R , A , X ) ) ) -> TrPred ( R , A , X ) C_ Pred ( R , A , X ) ) |
8 |
1 2 5 6 7
|
syl22anc |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> TrPred ( R , A , X ) C_ Pred ( R , A , X ) ) |
9 |
|
setlikespec |
|- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) |
10 |
|
trpredpred |
|- ( Pred ( R , A , X ) e. _V -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) ) |
11 |
9 10
|
syl |
|- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) ) |
12 |
11
|
3adant1 |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> Pred ( R , A , X ) C_ TrPred ( R , A , X ) ) |
13 |
8 12
|
eqssd |
|- ( ( R Po A /\ X e. A /\ R Se A ) -> TrPred ( R , A , X ) = Pred ( R , A , X ) ) |