Metamath Proof Explorer


Theorem trpredpo

Description: If R partially orders A , then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredpo R Po A X A R Se A TrPred R A X = Pred R A X

Proof

Step Hyp Ref Expression
1 simp2 R Po A X A R Se A X A
2 simp3 R Po A X A R Se A R Se A
3 predpo R Po A X A y Pred R A X Pred R A y Pred R A X
4 3 ralrimiv R Po A X A y Pred R A X Pred R A y Pred R A X
5 4 3adant3 R Po A X A R Se A y Pred R A X Pred R A y Pred R A X
6 ssidd R Po A X A R Se A Pred R A X Pred R A X
7 trpredmintr X A R Se A y Pred R A X Pred R A y Pred R A X Pred R A X Pred R A X TrPred R A X Pred R A X
8 1 2 5 6 7 syl22anc R Po A X A R Se A TrPred R A X Pred R A X
9 setlikespec X A R Se A Pred R A X V
10 trpredpred Pred R A X V Pred R A X TrPred R A X
11 9 10 syl X A R Se A Pred R A X TrPred R A X
12 11 3adant1 R Po A X A R Se A Pred R A X TrPred R A X
13 8 12 eqssd R Po A X A R Se A TrPred R A X = Pred R A X