Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑋 ∈ 𝐴 ) |
2 |
|
simp3 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) |
3 |
|
predpo |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
4 |
3
|
ralrimiv |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
|
ssidd |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
7 |
|
trpredmintr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
8 |
1 2 5 6 7
|
syl22anc |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
9 |
|
setlikespec |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
10 |
|
trpredpred |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |
13 |
8 12
|
eqssd |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |