Metamath Proof Explorer


Theorem trpredpo

Description: If R partially orders A , then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredpo ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → 𝑋𝐴 )
2 simp3 ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 )
3 predpo ( ( 𝑅 Po 𝐴𝑋𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
4 3 ralrimiv ( ( 𝑅 Po 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
5 4 3adant3 ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
6 ssidd ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
7 trpredmintr ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ ( ∀ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
8 1 2 5 6 7 syl22anc ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
9 setlikespec ( ( 𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )
10 trpredpred ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
11 9 10 syl ( ( 𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
12 11 3adant1 ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
13 8 12 eqssd ( ( 𝑅 Po 𝐴𝑋𝐴𝑅 Se 𝐴 ) → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )