Metamath Proof Explorer


Theorem trpredrec

Description: If Y is an R , A transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between Y and X . (Contributed by Scott Fenton, 9-May-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion trpredrec ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 eltrpred ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) )
2 nn0suc ( 𝑖 ∈ ω → ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) )
3 fveq2 ( 𝑖 = ∅ → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) )
4 3 eleq2d ( 𝑖 = ∅ → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ↔ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ) )
5 4 anbi2d ( 𝑖 = ∅ → ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) ↔ ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ) ) )
6 5 biimpd ( 𝑖 = ∅ → ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ) ) )
7 setlikespec ( ( 𝑋𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V )
8 fr0g ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
9 7 8 syl ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
10 9 eleq2d ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ↔ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
11 10 biimpa ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) ) → 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
12 6 11 syl6com ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( 𝑖 = ∅ → 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
13 fveq2 ( 𝑖 = suc 𝑗 → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) = ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) )
14 13 eleq2d ( 𝑖 = suc 𝑗 → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ↔ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) )
15 14 anbi2d ( 𝑖 = suc 𝑗 → ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) ↔ ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) ) )
16 15 biimpd ( 𝑖 = suc 𝑗 → ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) ) )
17 fvex ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ∈ V
18 trpredlem1 ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐴 )
19 7 18 syl ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝐴 )
20 19 sseld ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → 𝑧𝐴 ) )
21 setlikespec ( ( 𝑧𝐴𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
22 21 expcom ( 𝑅 Se 𝐴 → ( 𝑧𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) )
23 22 adantl ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑧𝐴 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) )
24 20 23 syld ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) )
25 24 ralrimiv ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
26 iunexg ( ( ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ∈ V ∧ ∀ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
27 17 25 26 sylancr ( ( 𝑋𝐴𝑅 Se 𝐴 ) → 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V )
28 nfcv 𝑎 Pred ( 𝑅 , 𝐴 , 𝑋 )
29 nfcv 𝑎 𝑗
30 nfmpt1 𝑎 ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) )
31 30 28 nfrdg 𝑎 rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) )
32 nfcv 𝑎 ω
33 31 32 nfres 𝑎 ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
34 33 29 nffv 𝑎 ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 )
35 nfcv 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 )
36 34 35 nfiun 𝑎 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 )
37 eqid ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) = ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
38 predeq3 ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) )
39 38 cbviunv 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = 𝑧𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 )
40 iuneq1 ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → 𝑧𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) = 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
41 39 40 syl5eq ( 𝑎 = ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) = 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
42 28 29 36 37 41 frsucmpt ( ( 𝑗 ∈ ω ∧ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) = 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
43 27 42 sylan2 ( ( 𝑗 ∈ ω ∧ ( 𝑋𝐴𝑅 Se 𝐴 ) ) → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) = 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) )
44 43 eleq2d ( ( 𝑗 ∈ ω ∧ ( 𝑋𝐴𝑅 Se 𝐴 ) ) → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ↔ 𝑌 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
45 44 biimpd ( ( 𝑗 ∈ ω ∧ ( 𝑋𝐴𝑅 Se 𝐴 ) ) → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) → 𝑌 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
46 45 expimpd ( 𝑗 ∈ ω → ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) → 𝑌 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
47 eliun ( 𝑌 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
48 ssiun2 ( 𝑗 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ 𝑗 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) )
49 dftrpred2 TrPred ( 𝑅 , 𝐴 , 𝑋 ) = 𝑗 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 )
50 48 49 sseqtrrdi ( 𝑗 ∈ ω → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )
51 50 sseld ( 𝑗 ∈ ω → ( 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) → 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) )
52 vex 𝑧 ∈ V
53 52 elpredim ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → 𝑌 𝑅 𝑧 )
54 53 a1i ( 𝑗 ∈ ω → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → 𝑌 𝑅 𝑧 ) )
55 51 54 anim12d ( 𝑗 ∈ ω → ( ( 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) → ( 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ∧ 𝑌 𝑅 𝑧 ) ) )
56 55 reximdv2 ( 𝑗 ∈ ω → ( ∃ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) )
57 56 com12 ( ∃ 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( 𝑗 ∈ ω → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) )
58 47 57 sylbi ( 𝑌 𝑧 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑗 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( 𝑗 ∈ ω → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) )
59 46 58 syl6com ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) → ( 𝑗 ∈ ω → ( 𝑗 ∈ ω → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )
60 59 pm2.43d ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ suc 𝑗 ) ) → ( 𝑗 ∈ ω → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) )
61 16 60 syl6com ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( 𝑖 = suc 𝑗 → ( 𝑗 ∈ ω → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )
62 61 com23 ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( 𝑗 ∈ ω → ( 𝑖 = suc 𝑗 → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )
63 62 rexlimdv ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 → ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) )
64 12 63 orim12d ( ( ( 𝑋𝐴𝑅 Se 𝐴 ) ∧ 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) → ( ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )
65 64 ex ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → ( ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) ) )
66 65 com23 ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( ( 𝑖 = ∅ ∨ ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) ) )
67 2 66 syl5 ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑖 ∈ ω → ( 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) ) )
68 67 rexlimdv ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )
69 1 68 syl5bi ( ( 𝑋𝐴𝑅 Se 𝐴 ) → ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∨ ∃ 𝑧 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) 𝑌 𝑅 𝑧 ) ) )