Step |
Hyp |
Ref |
Expression |
1 |
|
frsucmpt.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
frsucmpt.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
frsucmpt.3 |
⊢ Ⅎ 𝑥 𝐷 |
4 |
|
frsucmpt.4 |
⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
5 |
|
frsucmpt.5 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝐵 ) → 𝐶 = 𝐷 ) |
6 |
|
frsuc |
⊢ ( 𝐵 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) ) |
7 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ suc 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ suc 𝐵 ) |
8 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) |
9 |
8
|
fveq2i |
⊢ ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) ‘ 𝐵 ) ) |
10 |
6 7 9
|
3eqtr4g |
⊢ ( 𝐵 ∈ ω → ( 𝐹 ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐵 ) ∈ V |
12 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V ↦ 𝐶 ) |
13 |
12 1
|
nfrdg |
⊢ Ⅎ 𝑥 rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 ω |
15 |
13 14
|
nfres |
⊢ Ⅎ 𝑥 ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
16 |
4 15
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
17 |
16 2
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ 𝐶 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
19 |
17 3 5 18
|
fvmptf |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ V ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
20 |
11 19
|
mpan |
⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝑥 ∈ V ↦ 𝐶 ) ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝐷 ) |
21 |
10 20
|
sylan9eq |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |