Metamath Proof Explorer


Theorem dftrpred4g

Description: Another recursive expression for the transitive predecessors. (Contributed by Scott Fenton, 27-Apr-2012) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion dftrpred4g X A R Se A TrPred R A X = y Pred R A X y TrPred R A y

Proof

Step Hyp Ref Expression
1 dftrpred3g X A R Se A TrPred R A X = Pred R A X y Pred R A X TrPred R A y
2 iunun y Pred R A X y TrPred R A y = y Pred R A X y y Pred R A X TrPred R A y
3 iunid y Pred R A X y = Pred R A X
4 3 uneq1i y Pred R A X y y Pred R A X TrPred R A y = Pred R A X y Pred R A X TrPred R A y
5 2 4 eqtri y Pred R A X y TrPred R A y = Pred R A X y Pred R A X TrPred R A y
6 1 5 eqtr4di X A R Se A TrPred R A X = y Pred R A X y TrPred R A y