Metamath Proof Explorer


Theorem trpredeq3d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq3d.1 φ X = Y
Assertion trpredeq3d φ TrPred R A X = TrPred R A Y

Proof

Step Hyp Ref Expression
1 trpredeq3d.1 φ X = Y
2 trpredeq3 X = Y TrPred R A X = TrPred R A Y
3 1 2 syl φ TrPred R A X = TrPred R A Y