Metamath Proof Explorer


Theorem tsim1

Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsim1 θ¬φψ¬φψ

Proof

Step Hyp Ref Expression
1 exmid φψ¬φψ
2 df-or ¬φψ¬¬φψ
3 notnotb φ¬¬φ
4 3 bicomi ¬¬φφ
5 4 imbi1i ¬¬φψφψ
6 2 5 bitri ¬φψφψ
7 6 orbi1i ¬φψ¬φψφψ¬φψ
8 1 7 mpbir ¬φψ¬φψ
9 8 a1i θ¬φψ¬φψ