Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tsim1 | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid | ⊢ ( ( 𝜑 → 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) | |
2 | df-or | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( ¬ ¬ 𝜑 → 𝜓 ) ) | |
3 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
4 | 3 | bicomi | ⊢ ( ¬ ¬ 𝜑 ↔ 𝜑 ) |
5 | 4 | imbi1i | ⊢ ( ( ¬ ¬ 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) |
6 | 2 5 | bitri | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) |
7 | 6 | orbi1i | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) |
8 | 1 7 | mpbir | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) |
9 | 8 | a1i | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) |