Metamath Proof Explorer


Theorem tsim1

Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsim1 ( 𝜃 → ( ( ¬ 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 exmid ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) )
2 df-or ( ( ¬ 𝜑𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) )
3 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
4 3 bicomi ( ¬ ¬ 𝜑𝜑 )
5 4 imbi1i ( ( ¬ ¬ 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )
6 2 5 bitri ( ( ¬ 𝜑𝜓 ) ↔ ( 𝜑𝜓 ) )
7 6 orbi1i ( ( ( ¬ 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )
8 1 7 mpbir ( ( ¬ 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) )
9 8 a1i ( 𝜃 → ( ( ¬ 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓 ) ) )