Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsim1 | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmid | ⊢ ( ( 𝜑 → 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) | |
| 2 | df-or | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( ¬ ¬ 𝜑 → 𝜓 ) ) | |
| 3 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
| 4 | 3 | bicomi | ⊢ ( ¬ ¬ 𝜑 ↔ 𝜑 ) | 
| 5 | 4 | imbi1i | ⊢ ( ( ¬ ¬ 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) | 
| 6 | 2 5 | bitri | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 → 𝜓 ) ) | 
| 7 | 6 | orbi1i | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) | 
| 8 | 1 7 | mpbir | ⊢ ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) | 
| 9 | 8 | a1i | ⊢ ( 𝜃 → ( ( ¬ 𝜑 ∨ 𝜓 ) ∨ ¬ ( 𝜑 → 𝜓 ) ) ) |