Metamath Proof Explorer


Theorem tsim1

Description: A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsim1 θ ¬ φ ψ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 exmid φ ψ ¬ φ ψ
2 df-or ¬ φ ψ ¬ ¬ φ ψ
3 notnotb φ ¬ ¬ φ
4 3 bicomi ¬ ¬ φ φ
5 4 imbi1i ¬ ¬ φ ψ φ ψ
6 2 5 bitri ¬ φ ψ φ ψ
7 6 orbi1i ¬ φ ψ ¬ φ ψ φ ψ ¬ φ ψ
8 1 7 mpbir ¬ φ ψ ¬ φ ψ
9 8 a1i θ ¬ φ ψ ¬ φ ψ