Metamath Proof Explorer


Theorem tskinf

Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tskinf TTarskiTωT

Proof

Step Hyp Ref Expression
1 r111 R1:On1-1V
2 omsson ωOn
3 omex ωV
4 3 f1imaen R1:On1-1VωOnR1ωω
5 1 2 4 mp2an R1ωω
6 5 ensymi ωR1ω
7 simpl TTarskiTTTarski
8 tskr1om TTarskiTR1ωT
9 ssdomg TTarskiR1ωTR1ωT
10 7 8 9 sylc TTarskiTR1ωT
11 endomtr ωR1ωR1ωTωT
12 6 10 11 sylancr TTarskiTωT