| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r111 |
⊢ 𝑅1 : On –1-1→ V |
| 2 |
|
omsson |
⊢ ω ⊆ On |
| 3 |
|
omex |
⊢ ω ∈ V |
| 4 |
3
|
f1imaen |
⊢ ( ( 𝑅1 : On –1-1→ V ∧ ω ⊆ On ) → ( 𝑅1 “ ω ) ≈ ω ) |
| 5 |
1 2 4
|
mp2an |
⊢ ( 𝑅1 “ ω ) ≈ ω |
| 6 |
5
|
ensymi |
⊢ ω ≈ ( 𝑅1 “ ω ) |
| 7 |
|
simpl |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ Tarski ) |
| 8 |
|
tskr1om |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ⊆ 𝑇 ) |
| 9 |
|
ssdomg |
⊢ ( 𝑇 ∈ Tarski → ( ( 𝑅1 “ ω ) ⊆ 𝑇 → ( 𝑅1 “ ω ) ≼ 𝑇 ) ) |
| 10 |
7 8 9
|
sylc |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( 𝑅1 “ ω ) ≼ 𝑇 ) |
| 11 |
|
endomtr |
⊢ ( ( ω ≈ ( 𝑅1 “ ω ) ∧ ( 𝑅1 “ ω ) ≼ 𝑇 ) → ω ≼ 𝑇 ) |
| 12 |
6 10 11
|
sylancr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ω ≼ 𝑇 ) |