Metamath Proof Explorer


Theorem tskmid

Description: The set A is an element of the smallest Tarski class that contains A . CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion tskmid AVAtarskiMapA

Proof

Step Hyp Ref Expression
1 id AxAx
2 1 rgenw xTarskiAxAx
3 elintrabg AVAxTarski|AxxTarskiAxAx
4 2 3 mpbiri AVAxTarski|Ax
5 tskmval AVtarskiMapA=xTarski|Ax
6 4 5 eleqtrrd AVAtarskiMapA