Metamath Proof Explorer


Theorem tskpwss

Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskpwss TTarskiAT𝒫AT

Proof

Step Hyp Ref Expression
1 eltskg TTarskiTTarskixT𝒫xTyT𝒫xyx𝒫TxTxT
2 1 ibi TTarskixT𝒫xTyT𝒫xyx𝒫TxTxT
3 2 simpld TTarskixT𝒫xTyT𝒫xy
4 simpl 𝒫xTyT𝒫xy𝒫xT
5 4 ralimi xT𝒫xTyT𝒫xyxT𝒫xT
6 3 5 syl TTarskixT𝒫xT
7 pweq x=A𝒫x=𝒫A
8 7 sseq1d x=A𝒫xT𝒫AT
9 8 rspccva xT𝒫xTAT𝒫AT
10 6 9 sylan TTarskiAT𝒫AT