Metamath Proof Explorer


Theorem tsksdom

Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 18-Jun-2013)

Ref Expression
Assertion tsksdom TTarskiATAT

Proof

Step Hyp Ref Expression
1 canth2g ATA𝒫A
2 simpl TTarskiATTTarski
3 tskpwss TTarskiAT𝒫AT
4 ssdomg TTarski𝒫AT𝒫AT
5 2 3 4 sylc TTarskiAT𝒫AT
6 sdomdomtr A𝒫A𝒫ATAT
7 1 5 6 syl2an2 TTarskiATAT