Metamath Proof Explorer


Theorem tsktrss

Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsktrss TTarskiTrAATAT

Proof

Step Hyp Ref Expression
1 simp2 TTarskiTrAATTrA
2 dftr4 TrAA𝒫A
3 1 2 sylib TTarskiTrAATA𝒫A
4 tskpwss TTarskiAT𝒫AT
5 4 3adant2 TTarskiTrAAT𝒫AT
6 3 5 sstrd TTarskiTrAATAT