Metamath Proof Explorer


Theorem tvclvec

Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tvclvec WTopVecWLVec

Proof

Step Hyp Ref Expression
1 tvclmod WTopVecWLMod
2 eqid ScalarW=ScalarW
3 2 tvctdrg WTopVecScalarWTopDRing
4 tdrgdrng ScalarWTopDRingScalarWDivRing
5 3 4 syl WTopVecScalarWDivRing
6 2 islvec WLVecWLModScalarWDivRing
7 1 5 6 sylanbrc WTopVecWLVec