Metamath Proof Explorer


Theorem tz6.12

Description: Function value. Theorem 6.12(1) of TakeutiZaring p. 27. (Contributed by NM, 10-Jul-1994)

Ref Expression
Assertion tz6.12 AyF∃!yAyFFA=y

Proof

Step Hyp Ref Expression
1 df-br AFyAyF
2 1 eubii ∃!yAFy∃!yAyF
3 tz6.12-1 AFy∃!yAFyFA=y
4 1 2 3 syl2anbr AyF∃!yAyFFA=y