Metamath Proof Explorer


Theorem uc1pn0

Description: Unitic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pn0.p P=Poly1R
uc1pn0.z 0˙=0P
uc1pn0.c C=Unic1pR
Assertion uc1pn0 FCF0˙

Proof

Step Hyp Ref Expression
1 uc1pn0.p P=Poly1R
2 uc1pn0.z 0˙=0P
3 uc1pn0.c C=Unic1pR
4 eqid BaseP=BaseP
5 eqid deg1R=deg1R
6 eqid UnitR=UnitR
7 1 4 2 5 3 6 isuc1p FCFBasePF0˙coe1Fdeg1RFUnitR
8 7 simp2bi FCF0˙