Metamath Proof Explorer


Theorem uhgrunop

Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If <. V , E >. and <. V , F >. are hypergraphs, then <. V , E u. F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uhgrun.g φGUHGraph
uhgrun.h φHUHGraph
uhgrun.e E=iEdgG
uhgrun.f F=iEdgH
uhgrun.vg V=VtxG
uhgrun.vh φVtxH=V
uhgrun.i φdomEdomF=
Assertion uhgrunop φVEFUHGraph

Proof

Step Hyp Ref Expression
1 uhgrun.g φGUHGraph
2 uhgrun.h φHUHGraph
3 uhgrun.e E=iEdgG
4 uhgrun.f F=iEdgH
5 uhgrun.vg V=VtxG
6 uhgrun.vh φVtxH=V
7 uhgrun.i φdomEdomF=
8 opex VEFV
9 8 a1i φVEFV
10 5 fvexi VV
11 3 fvexi EV
12 4 fvexi FV
13 11 12 unex EFV
14 10 13 pm3.2i VVEFV
15 opvtxfv VVEFVVtxVEF=V
16 14 15 mp1i φVtxVEF=V
17 opiedgfv VVEFViEdgVEF=EF
18 14 17 mp1i φiEdgVEF=EF
19 1 2 3 4 5 6 7 9 16 18 uhgrun φVEFUHGraph