Metamath Proof Explorer


Theorem uhgrunop

Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If <. V , E >. and <. V , F >. are hypergraphs, then <. V , E u. F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uhgrun.g φ G UHGraph
uhgrun.h φ H UHGraph
uhgrun.e E = iEdg G
uhgrun.f F = iEdg H
uhgrun.vg V = Vtx G
uhgrun.vh φ Vtx H = V
uhgrun.i φ dom E dom F =
Assertion uhgrunop φ V E F UHGraph

Proof

Step Hyp Ref Expression
1 uhgrun.g φ G UHGraph
2 uhgrun.h φ H UHGraph
3 uhgrun.e E = iEdg G
4 uhgrun.f F = iEdg H
5 uhgrun.vg V = Vtx G
6 uhgrun.vh φ Vtx H = V
7 uhgrun.i φ dom E dom F =
8 opex V E F V
9 8 a1i φ V E F V
10 5 fvexi V V
11 3 fvexi E V
12 4 fvexi F V
13 11 12 unex E F V
14 10 13 pm3.2i V V E F V
15 opvtxfv V V E F V Vtx V E F = V
16 14 15 mp1i φ Vtx V E F = V
17 opiedgfv V V E F V iEdg V E F = E F
18 14 17 mp1i φ iEdg V E F = E F
19 1 2 3 4 5 6 7 9 16 18 uhgrun φ V E F UHGraph