Metamath Proof Explorer


Theorem uhgrun

Description: The union U of two (undirected) hypergraphs G and H with the same vertex set V is a hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uhgrun.g φGUHGraph
uhgrun.h φHUHGraph
uhgrun.e E=iEdgG
uhgrun.f F=iEdgH
uhgrun.vg V=VtxG
uhgrun.vh φVtxH=V
uhgrun.i φdomEdomF=
uhgrun.u φUW
uhgrun.v φVtxU=V
uhgrun.un φiEdgU=EF
Assertion uhgrun φUUHGraph

Proof

Step Hyp Ref Expression
1 uhgrun.g φGUHGraph
2 uhgrun.h φHUHGraph
3 uhgrun.e E=iEdgG
4 uhgrun.f F=iEdgH
5 uhgrun.vg V=VtxG
6 uhgrun.vh φVtxH=V
7 uhgrun.i φdomEdomF=
8 uhgrun.u φUW
9 uhgrun.v φVtxU=V
10 uhgrun.un φiEdgU=EF
11 5 3 uhgrf GUHGraphE:domE𝒫V
12 1 11 syl φE:domE𝒫V
13 eqid VtxH=VtxH
14 13 4 uhgrf HUHGraphF:domF𝒫VtxH
15 2 14 syl φF:domF𝒫VtxH
16 6 eqcomd φV=VtxH
17 16 pweqd φ𝒫V=𝒫VtxH
18 17 difeq1d φ𝒫V=𝒫VtxH
19 18 feq3d φF:domF𝒫VF:domF𝒫VtxH
20 15 19 mpbird φF:domF𝒫V
21 12 20 7 fun2d φEF:domEdomF𝒫V
22 10 dmeqd φdomiEdgU=domEF
23 dmun domEF=domEdomF
24 22 23 eqtrdi φdomiEdgU=domEdomF
25 9 pweqd φ𝒫VtxU=𝒫V
26 25 difeq1d φ𝒫VtxU=𝒫V
27 10 24 26 feq123d φiEdgU:domiEdgU𝒫VtxUEF:domEdomF𝒫V
28 21 27 mpbird φiEdgU:domiEdgU𝒫VtxU
29 eqid VtxU=VtxU
30 eqid iEdgU=iEdgU
31 29 30 isuhgr UWUUHGraphiEdgU:domiEdgU𝒫VtxU
32 8 31 syl φUUHGraphiEdgU:domiEdgU𝒫VtxU
33 28 32 mpbird φUUHGraph