Metamath Proof Explorer


Theorem umgrspanop

Description: A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses uhgrspanop.v V=VtxG
uhgrspanop.e E=iEdgG
Assertion umgrspanop GUMGraphVEAUMGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V=VtxG
2 uhgrspanop.e E=iEdgG
3 vex gV
4 3 a1i GUMGraphVtxg=ViEdgg=EAgV
5 simprl GUMGraphVtxg=ViEdgg=EAVtxg=V
6 simprr GUMGraphVtxg=ViEdgg=EAiEdgg=EA
7 simpl GUMGraphVtxg=ViEdgg=EAGUMGraph
8 1 2 4 5 6 7 umgrspan GUMGraphVtxg=ViEdgg=EAgUMGraph
9 8 ex GUMGraphVtxg=ViEdgg=EAgUMGraph
10 9 alrimiv GUMGraphgVtxg=ViEdgg=EAgUMGraph
11 1 fvexi VV
12 11 a1i GUMGraphVV
13 2 fvexi EV
14 13 resex EAV
15 14 a1i GUMGraphEAV
16 10 12 15 gropeld GUMGraphVEAUMGraph