Metamath Proof Explorer


Theorem umgrspan

Description: A spanning subgraph S of a multigraph G is a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V=VtxG
uhgrspan.e E=iEdgG
uhgrspan.s φSW
uhgrspan.q φVtxS=V
uhgrspan.r φiEdgS=EA
umgrspan.g φGUMGraph
Assertion umgrspan φSUMGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V=VtxG
2 uhgrspan.e E=iEdgG
3 uhgrspan.s φSW
4 uhgrspan.q φVtxS=V
5 uhgrspan.r φiEdgS=EA
6 umgrspan.g φGUMGraph
7 umgruhgr GUMGraphGUHGraph
8 6 7 syl φGUHGraph
9 1 2 3 4 5 8 uhgrspansubgr φSSubGraphG
10 subumgr GUMGraphSSubGraphGSUMGraph
11 6 9 10 syl2anc φSUMGraph