Description: A spanning subgraph S of a multigraph G is a multigraph. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | ||
| umgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | ||
| Assertion | umgrspan | ⊢ ( 𝜑 → 𝑆 ∈ UMGraph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 4 | uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 5 | uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | |
| 6 | umgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | |
| 7 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | 
| 9 | 1 2 3 4 5 8 | uhgrspansubgr | ⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) | 
| 10 | subumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UMGraph ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( 𝜑 → 𝑆 ∈ UMGraph ) |