Metamath Proof Explorer


Theorem usgrspanop

Description: A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v V=VtxG
uhgrspanop.e E=iEdgG
Assertion usgrspanop GUSGraphVEAUSGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V=VtxG
2 uhgrspanop.e E=iEdgG
3 vex gV
4 3 a1i GUSGraphVtxg=ViEdgg=EAgV
5 simprl GUSGraphVtxg=ViEdgg=EAVtxg=V
6 simprr GUSGraphVtxg=ViEdgg=EAiEdgg=EA
7 simpl GUSGraphVtxg=ViEdgg=EAGUSGraph
8 1 2 4 5 6 7 usgrspan GUSGraphVtxg=ViEdgg=EAgUSGraph
9 8 ex GUSGraphVtxg=ViEdgg=EAgUSGraph
10 9 alrimiv GUSGraphgVtxg=ViEdgg=EAgUSGraph
11 1 fvexi VV
12 11 a1i GUSGraphVV
13 2 fvexi EV
14 13 resex EAV
15 14 a1i GUSGraphEAV
16 10 12 15 gropeld GUSGraphVEAUSGraph