Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspanop.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgrspanop.e |
|- E = ( iEdg ` G ) |
3 |
|
vex |
|- g e. _V |
4 |
3
|
a1i |
|- ( ( G e. USGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> g e. _V ) |
5 |
|
simprl |
|- ( ( G e. USGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> ( Vtx ` g ) = V ) |
6 |
|
simprr |
|- ( ( G e. USGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> ( iEdg ` g ) = ( E |` A ) ) |
7 |
|
simpl |
|- ( ( G e. USGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> G e. USGraph ) |
8 |
1 2 4 5 6 7
|
usgrspan |
|- ( ( G e. USGraph /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) ) -> g e. USGraph ) |
9 |
8
|
ex |
|- ( G e. USGraph -> ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) -> g e. USGraph ) ) |
10 |
9
|
alrimiv |
|- ( G e. USGraph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = ( E |` A ) ) -> g e. USGraph ) ) |
11 |
1
|
fvexi |
|- V e. _V |
12 |
11
|
a1i |
|- ( G e. USGraph -> V e. _V ) |
13 |
2
|
fvexi |
|- E e. _V |
14 |
13
|
resex |
|- ( E |` A ) e. _V |
15 |
14
|
a1i |
|- ( G e. USGraph -> ( E |` A ) e. _V ) |
16 |
10 12 15
|
gropeld |
|- ( G e. USGraph -> <. V , ( E |` A ) >. e. USGraph ) |