Description: Lemma 1 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan1.v | |- V = ( Vtx ` G ) | |
| uhgrspan1.i | |- I = ( iEdg ` G ) | ||
| uhgrspan1.f | |- F = { i e. dom I | N e/ ( I ` i ) } | ||
| Assertion | uhgrspan1lem1 | |- ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uhgrspan1.v | |- V = ( Vtx ` G ) | |
| 2 | uhgrspan1.i | |- I = ( iEdg ` G ) | |
| 3 | uhgrspan1.f |  |-  F = { i e. dom I | N e/ ( I ` i ) } | |
| 4 | 1 | fvexi | |- V e. _V | 
| 5 | 4 | difexi |  |-  ( V \ { N } ) e. _V | 
| 6 | 2 | fvexi | |- I e. _V | 
| 7 | 6 | resex | |- ( I |` F ) e. _V | 
| 8 | 5 7 | pm3.2i |  |-  ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) |