Metamath Proof Explorer
Description: Lemma 1 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
uhgrspan1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
|
|
uhgrspan1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
|
|
uhgrspan1.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } |
|
Assertion |
uhgrspan1lem1 |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrspan1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgrspan1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
uhgrspan1.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } |
| 4 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 5 |
4
|
difexi |
⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
| 6 |
2
|
fvexi |
⊢ 𝐼 ∈ V |
| 7 |
6
|
resex |
⊢ ( 𝐼 ↾ 𝐹 ) ∈ V |
| 8 |
5 7
|
pm3.2i |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) |