Metamath Proof Explorer
		
		
		
		Description:  Lemma 1 for uhgrspan1 .  (Contributed by AV, 19-Nov-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | uhgrspan1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
					
						|  |  | uhgrspan1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
					
						|  |  | uhgrspan1.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐼  ∣  𝑁  ∉  ( 𝐼 ‘ 𝑖 ) } | 
				
					|  | Assertion | uhgrspan1lem1 | ⊢  ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  ( 𝐼  ↾  𝐹 )  ∈  V ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspan1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | uhgrspan1.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐼  ∣  𝑁  ∉  ( 𝐼 ‘ 𝑖 ) } | 
						
							| 4 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 5 | 4 | difexi | ⊢ ( 𝑉  ∖  { 𝑁 } )  ∈  V | 
						
							| 6 | 2 | fvexi | ⊢ 𝐼  ∈  V | 
						
							| 7 | 6 | resex | ⊢ ( 𝐼  ↾  𝐹 )  ∈  V | 
						
							| 8 | 5 7 | pm3.2i | ⊢ ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  ( 𝐼  ↾  𝐹 )  ∈  V ) |