| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspan1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | uhgrspan1.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐼  ∣  𝑁  ∉  ( 𝐼 ‘ 𝑖 ) } | 
						
							| 4 |  | uhgrspan1.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉 | 
						
							| 5 |  | difssd | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑉  ∖  { 𝑁 } )  ⊆  𝑉 ) | 
						
							| 6 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  𝐹 ) | 
						
							| 7 |  | resresdm | ⊢ ( ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  𝐹 )  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  dom  ( iEdg ‘ 𝑆 ) ) ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  dom  ( iEdg ‘ 𝑆 ) ) ) | 
						
							| 9 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐼 ) | 
						
							| 10 |  | fvelima | ⊢ ( ( Fun  𝐼  ∧  𝑐  ∈  ( 𝐼  “  𝐹 ) )  →  ∃ 𝑗  ∈  𝐹 ( 𝐼 ‘ 𝑗 )  =  𝑐 ) | 
						
							| 11 | 10 | ex | ⊢ ( Fun  𝐼  →  ( 𝑐  ∈  ( 𝐼  “  𝐹 )  →  ∃ 𝑗  ∈  𝐹 ( 𝐼 ‘ 𝑗 )  =  𝑐 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( 𝐺  ∈  UHGraph  →  ( 𝑐  ∈  ( 𝐼  “  𝐹 )  →  ∃ 𝑗  ∈  𝐹 ( 𝐼 ‘ 𝑗 )  =  𝑐 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑐  ∈  ( 𝐼  “  𝐹 )  →  ∃ 𝑗  ∈  𝐹 ( 𝐼 ‘ 𝑗 )  =  𝑐 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑖  =  𝑗  →  𝑁  =  𝑁 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐼 ‘ 𝑖 )  =  ( 𝐼 ‘ 𝑗 ) ) | 
						
							| 16 | 14 15 | neleq12d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑁  ∉  ( 𝐼 ‘ 𝑖 )  ↔  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) ) | 
						
							| 17 | 16 3 | elrab2 | ⊢ ( 𝑗  ∈  𝐹  ↔  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) ) | 
						
							| 18 |  | fvexd | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) )  →  ( 𝐼 ‘ 𝑗 )  ∈  V ) | 
						
							| 19 | 1 2 | uhgrss | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑗  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑗 )  ⊆  𝑉 ) | 
						
							| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) )  →  ( 𝐼 ‘ 𝑗 )  ⊆  𝑉 ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) )  →  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) | 
						
							| 22 |  | elpwdifsn | ⊢ ( ( ( 𝐼 ‘ 𝑗 )  ∈  V  ∧  ( 𝐼 ‘ 𝑗 )  ⊆  𝑉  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) )  →  ( 𝐼 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) )  →  ( 𝐼 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 24 |  | eleq1 | ⊢ ( 𝑐  =  ( 𝐼 ‘ 𝑗 )  →  ( 𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ↔  ( 𝐼 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 25 | 24 | eqcoms | ⊢ ( ( 𝐼 ‘ 𝑗 )  =  𝑐  →  ( 𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ↔  ( 𝐼 ‘ 𝑗 )  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 26 | 23 25 | syl5ibrcom | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) ) )  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑐  →  𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑗  ∈  dom  𝐼  ∧  𝑁  ∉  ( 𝐼 ‘ 𝑗 ) )  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑐  →  𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) ) | 
						
							| 28 | 17 27 | biimtrid | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑗  ∈  𝐹  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑐  →  𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) ) | 
						
							| 29 | 28 | rexlimdv | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∃ 𝑗  ∈  𝐹 ( 𝐼 ‘ 𝑗 )  =  𝑐  →  𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 30 | 13 29 | syld | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑐  ∈  ( 𝐼  “  𝐹 )  →  𝑐  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 31 | 30 | ssrdv | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐼  “  𝐹 )  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 32 |  | opex | ⊢ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉  ∈  V | 
						
							| 33 | 4 32 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( 𝑁  ∈  𝑉  →  𝑆  ∈  V ) | 
						
							| 35 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 36 | 35 | eqcomi | ⊢ ( 𝑉  ∖  { 𝑁 } )  =  ( Vtx ‘ 𝑆 ) | 
						
							| 37 |  | eqid | ⊢ ( iEdg ‘ 𝑆 )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 38 | 6 | rneqi | ⊢ ran  ( iEdg ‘ 𝑆 )  =  ran  ( 𝐼  ↾  𝐹 ) | 
						
							| 39 |  | edgval | ⊢ ( Edg ‘ 𝑆 )  =  ran  ( iEdg ‘ 𝑆 ) | 
						
							| 40 |  | df-ima | ⊢ ( 𝐼  “  𝐹 )  =  ran  ( 𝐼  ↾  𝐹 ) | 
						
							| 41 | 38 39 40 | 3eqtr4ri | ⊢ ( 𝐼  “  𝐹 )  =  ( Edg ‘ 𝑆 ) | 
						
							| 42 | 36 1 37 2 41 | issubgr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑆  ∈  V )  →  ( 𝑆  SubGraph  𝐺  ↔  ( ( 𝑉  ∖  { 𝑁 } )  ⊆  𝑉  ∧  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  dom  ( iEdg ‘ 𝑆 ) )  ∧  ( 𝐼  “  𝐹 )  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) ) | 
						
							| 43 | 34 42 | sylan2 | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑆  SubGraph  𝐺  ↔  ( ( 𝑉  ∖  { 𝑁 } )  ⊆  𝑉  ∧  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  dom  ( iEdg ‘ 𝑆 ) )  ∧  ( 𝐼  “  𝐹 )  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) ) | 
						
							| 44 | 5 8 31 43 | mpbir3and | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  SubGraph  𝐺 ) |