| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspan1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | uhgrspan1.f | ⊢ 𝐹  =  { 𝑖  ∈  dom  𝐼  ∣  𝑁  ∉  ( 𝐼 ‘ 𝑖 ) } | 
						
							| 4 |  | uhgrspan1.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉 | 
						
							| 5 | 4 | fveq2i | ⊢ ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉 ) | 
						
							| 6 | 1 2 3 | uhgrspan1lem1 | ⊢ ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  ( 𝐼  ↾  𝐹 )  ∈  V ) | 
						
							| 7 |  | opvtxfv | ⊢ ( ( ( 𝑉  ∖  { 𝑁 } )  ∈  V  ∧  ( 𝐼  ↾  𝐹 )  ∈  V )  →  ( Vtx ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉 )  =  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( Vtx ‘ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  ( 𝐼  ↾  𝐹 ) 〉 )  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 9 | 5 8 | eqtri | ⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } ) |