Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspan1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uhgrspan1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
uhgrspan1.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } |
4 |
|
uhgrspan1.s |
⊢ 𝑆 = ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) ⟩ |
5 |
4
|
fveq2i |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) ⟩ ) |
6 |
1 2 3
|
uhgrspan1lem1 |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) |
7 |
|
opvtxfv |
⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) → ( Vtx ‘ ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) ⟩ ) = ( 𝑉 ∖ { 𝑁 } ) ) |
8 |
6 7
|
ax-mp |
⊢ ( Vtx ‘ ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) ⟩ ) = ( 𝑉 ∖ { 𝑁 } ) |
9 |
5 8
|
eqtri |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |