| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgrspan1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | uhgrspan1.f |  |-  F = { i e. dom I | N e/ ( I ` i ) } | 
						
							| 4 |  | uhgrspan1.s |  |-  S = <. ( V \ { N } ) , ( I |` F ) >. | 
						
							| 5 | 4 | fveq2i |  |-  ( Vtx ` S ) = ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. ) | 
						
							| 6 | 1 2 3 | uhgrspan1lem1 |  |-  ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) | 
						
							| 7 |  | opvtxfv |  |-  ( ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) -> ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( V \ { N } ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( V \ { N } ) | 
						
							| 9 | 5 8 | eqtri |  |-  ( Vtx ` S ) = ( V \ { N } ) |